Small ball probabilities for the Slepian Gaussian fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Ball Probabilities for the Slepian Gaussian Fields

The d-dimensional Slepian Gaussian random field {S(t), t ∈ R+} is a mean zero Gaussian process with covariance function ES(s)S(t) = ∏d i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R+. Small ball probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet. The method of proof for t...

متن کامل

Small ball probabilities for Gaussian Markov processes under the Lp - norm ( Wenbo

Let {X (t); 06t61} be a real-valued continuous Gaussian Markov process with mean zero and covariance (s; t)=EX (s)X (t) 6= 0 for 0¡s; t ¡ 1. It is known that we can write (s; t)= G(min(s; t))H (max(s; t)) with G¿ 0; H ¿ 0 and G=H nondecreasing on the interval (0; 1). We show that for the Lp-norm on C[0; 1], 16p6∞ lim →0 2 logP(‖X (t)‖p ¡ ) =− p (∫ 1 0 (G′H − H ′G)p=(2+p) dt )(2+p)=p and its var...

متن کامل

Small-Ball Probabilities for the Volume of Random Convex Sets

We prove small-deviation estimates for the volume of random convex sets. The focus is on convex hulls and Minkowski sums of line segments generated by independent random points. The random models considered include (Lebesgue) absolutely continuous probability measures with bounded densities and the class of log-concave measures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2006

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-06-03963-8