Small ball probabilities for the Slepian Gaussian fields
نویسندگان
چکیده
منابع مشابه
Small Ball Probabilities for the Slepian Gaussian Fields
The d-dimensional Slepian Gaussian random field {S(t), t ∈ R+} is a mean zero Gaussian process with covariance function ES(s)S(t) = ∏d i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R+. Small ball probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet. The method of proof for t...
متن کاملSmall ball probabilities for Gaussian Markov processes under the Lp - norm ( Wenbo
Let {X (t); 06t61} be a real-valued continuous Gaussian Markov process with mean zero and covariance (s; t)=EX (s)X (t) 6= 0 for 0¡s; t ¡ 1. It is known that we can write (s; t)= G(min(s; t))H (max(s; t)) with G¿ 0; H ¿ 0 and G=H nondecreasing on the interval (0; 1). We show that for the Lp-norm on C[0; 1], 16p6∞ lim →0 2 logP(‖X (t)‖p ¡ ) =− p (∫ 1 0 (G′H − H ′G)p=(2+p) dt )(2+p)=p and its var...
متن کاملSmall-Ball Probabilities for the Volume of Random Convex Sets
We prove small-deviation estimates for the volume of random convex sets. The focus is on convex hulls and Minkowski sums of line segments generated by independent random points. The random models considered include (Lebesgue) absolutely continuous probability measures with bounded densities and the class of log-concave measures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2006
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-06-03963-8